Harder applications of Heron's formula

Question 1

You are given a rope of length s, find the largest area of the triangle formed by this rope. What is its area?

Solution

Yue Kwok Choy

We are going to prove that the equilateral triangle has the maximum area for any fixed perimeter s.

Let a, b, c be the sides of the triangle.

The perimeter is fixed and a + b + c = 2s, so 2s is a constant.

By Heron's formula:
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$
, $s = \frac{a+b+c}{2}$ (1)

Now, by Arithmetic mean – Geometric mean inequality (for three variables),

$$(s-a)(s-b)(s-c) \le \left[\frac{(s-a)+(s-b)+(s-c)}{3}\right]^3 = \left[\frac{3s-a-b-c}{3}\right]^3 = \left[\frac{3s-2s}{3}\right]^3 = \frac{s^3}{27} \qquad \dots \qquad (2)$$

and the equality occurs when s-a = s-b = s-c (the variables are all equal), that is, a = b = c. The triangle is therefore equilateral.

By (2), since the product is always less than a constant $\frac{s^3}{27}$, this constant is the maximum for the product

and by Heron's formula, the maximum area of a triangle with fixed perimeter s is

$$\Delta_{\max} = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{\frac{s(s^3)}{27}} = \frac{s^2}{3\sqrt{3}} = \frac{\sqrt{3}s^2}{9}$$

Ouestion 2

You are given the medians of the triangle m_a , m_b and m_c . Find the area of ΔABC .

Solution

As in the diagram, D, E, F are mid-points of BC, CA and AB.

G is the centroid . $m_a = AD$, $m_b = BE$ and $m_c = CF$.

Now,
$$AG = \frac{2}{3}AD$$

 $\therefore \quad \Delta AGF = \frac{1}{2}\Delta ABG = \frac{1}{6}\Delta ABC$

Let P be the mid-point of AG, we have

$$\Delta FPG = \frac{1}{2} \Delta AFG = \frac{1}{12} \Delta ABC$$

By Heron's formula,

$$PG = \frac{1}{3}m_a$$
, $FP = \frac{1}{3}m_b$, $FG = \frac{1}{3}m_c$

$$\therefore \quad \Delta ABC = 12\Delta FPG = 12 \times \frac{1}{9} \sqrt{m(m - m_a)(m - m_b)(m - m_c)} \quad \text{where} \quad m = \frac{1}{2} (m_a + m_b + m_c)$$
$$= \frac{4}{3} \sqrt{m(m - m_a)(m - m_b)(m - m_c)}$$

Question 3

You are given the altitudes of the triangle $\ h_a$, $h_b \ \ and \ \ h_c$. Find the area of $\ \Delta ABC$.

Solution

As in the diagram, $AD \perp BC$, $BE \perp CA$, $CF \perp AB$.

G is the orthocentre $h_a = AD$, $h_b = BE$ and $h_c = CF$.

Since
$$\Delta = \frac{1}{2} h_a a = \frac{1}{2} h_b b = \frac{1}{2} h_c c$$
, we have :
 $a = \frac{2\Delta}{h_a}, b = \frac{2\Delta}{h_b}, c = \frac{2\Delta}{h_c}$ (3)
 $s = \frac{a+b+c}{2} = \Delta \left(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)$ (4)

Put (3), (4) in Heron's formula : $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

$$\Delta^{2} = \left\{ \Delta \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \right\} \left\{ \Delta \left(-\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \right\} \left\{ \Delta \left(\frac{1}{h_{a}} - \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \right\} \left\{ \Delta \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right) \right\}$$
$$\therefore \quad \Delta = \sqrt{\frac{1}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(-\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} - \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(-\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} - \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} - \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} - \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right) \left(\frac{1}{h_{a}} + \frac{1}{h_{b}} - \frac{1}{h_{c}} \right)}{\left(\frac{1}{h_{a}} + \frac{1}{h_{b}} + \frac{1}{h_{c}} \right)}$$

Question 4

You are given the altitudes of the triangle h_b , h_c and side a . Show that the area of ΔABC , Δ ,

satisfies the equation :
$$16\left(\frac{1}{{h_b}^2} - \frac{1}{{h_c}^2}\right)^2 \Delta^4 - 8\left[a^2\left(\frac{1}{{h_b}^2} + \frac{1}{{h_c}^2}\right) - 2\right]\Delta^2 + a^4 = 0$$
. If $h_b = 4, h_c = \frac{7\sqrt{2}}{2}$ and

a = 5, find Δ .

Solution

As in the diagram, $AD\perp BC$, $BE\perp CA$, $CF\perp AB$. G is the orthocentre $h_a = AD$, $h_b = BE$ and $h_c = CF$. We have $b = \frac{2\Delta}{h_b}$, $c = \frac{2\Delta}{h_c}$ (5)

Put (5) in Heron's formula : $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

$$\Delta = \frac{1}{4} \left[a + \left(\frac{1}{h_b} + \frac{1}{h_c} \right) 2\Delta \right]^{1/2} \left[-a + \left(\frac{1}{h_b} + \frac{1}{h_c} \right) 2\Delta \right]^{1/2} \left[a + \left(\frac{1}{h_b} - \frac{1}{h_c} \right) 2\Delta \right]^{1/2} \left[a - \left(\frac{1}{h_b} - \frac{1}{h_c} \right) 2\Delta \right]^{1/2} \right]^{1/2}$$

$$16\Delta^2 = \left[\left(\frac{1}{h_b} + \frac{1}{h_c} \right)^2 4\Delta^2 - a^2 \right]^{1/2} \left[a^2 - \left(\frac{1}{h_b} - \frac{1}{h_c} \right)^2 4\Delta^2 \right]^{1/2}$$

After expansion, we can get an equation : $16\left(\frac{1}{{h_b}^2} - \frac{1}{{h_c}^2}\right)^2 \Delta^4 - 8\left[a^2\left(\frac{1}{{h_b}^2} + \frac{1}{{h_c}^2}\right) - 2\right]\Delta^2 + a^4 = 0$

This is a bi-quadratic equation in Δ , we can solve for unique **positive real root**.