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Harder applications of Heron's formula 

Yue Kwok Choy 

Question 1 

 You are given a rope of length  s , find the largest area of the triangle formed by this 

rope. What is its area ?  

 

Solution 

 

 We are going to prove that the equilateral triangle has the maximum area for any fixed 

perimeter  s . 

 Let  a , b , c  be the sides of the triangle . 

 The perimeter is fixed  and  a + b + c = 2s , so  2s  is a constant . 

 By  Heron's formula :   ( )( )( )csbsass −−−=∆     ,   
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 Now,  by  Arithmetic mean – Geometric mean inequality (for three variables) , 

 ( )( )( ) ( ) ( ) ( )
27

s

3

s2s3

3

cbas3

3

csbsas
csbsas

3333

=




 −
=




 −−−
=




 −+−+−
≤−−−   …. (2) 

 and the equality occurs when  s – a = s – b = s – c (the variables are all equal) , that is,  a = b = c . 

 The triangle is therefore equilateral . 

 By (2), since the product is always less than a constant 
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s
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, this constant is the maximum for the product 

 and by Heron's formula, the maximum area of a triangle with fixed perimeter  s  is 
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Question 2 

 You are given the medians of the triangle  ma , mb  and  mc . Find the area of  ∆ABC . 

 

Solution 

 As in the diagram, D, E, F  are mid-points of  BC, CA and AB. 

 G  is the centroid .  ma = AD , mb = BE  and  mc = CF . 

 Now,  AD
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 Let  P  be the mid-point of  AG , we have  cba m
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 By Heron's formula, 
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Question 3 

 You are given the altitudes of the triangle  ha , hb  and  hc . Find the area of  ∆ABC . 

 

Solution 

 As in the diagram,  AD⊥ BC, BE⊥ CA, CF⊥ AB. 

 G  is the orthocentre  ha = AD , hb = BE  and  hc = CF . 

 Since  ch
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 Put  (3), (4) in Heron's formula :   ( )( )( )csbsass −−−=∆   
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Question 4 

 You are given the altitudes of the triangle  hb ,  hc  and side a . Show that the area of  ∆ABC , ∆ , 

satisfies the equation : 0a2
h

1

h

1
a8

h

1

h

1
16

42

2

c

2

b

24

2

2

c

2

b

=+∆











−










+−∆










−  .  If  

2

27
h,4h cb ==  and  

a = 5 ,  find  ∆ . 

 

Solution 

 As in the diagram,  AD⊥ BC, BE⊥ CA, CF⊥ AB. 

 G  is the orthocentre  ha = AD , hb = BE  and  hc = CF . 

 We have  
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 Put  (5)  in Heron's formula :   ( )( )( )csbsass −−−=∆  
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 After expansion, we can get an equation : 0a2
h

1

h

1
a8

h

1

h

1
16

42

2

c

2

b

24

2

2

c

2

b

=+∆











−










+−∆










−  

 This is a bi-quadratic equation in  ∆ , we can solve for unique positive real root . 

 


