Simultaneous Equation of two unknowns

 

Introduction

 

       Besides the usual “Substitution” and “Elimination” methods, we can vary our techniques so as to find our solutions easier.

 

 

The coefficients of one variable in two given equations differ by ±1

 

       Use addition or subtraction to get one variable with coefficient ±1. Then change the subject and substitute in one of the given equation.

 

 

Example

 

       Solve:     3x + 5y = 17          (1)

                       2x – 3y = 1             (2)

       Solution:

       (1) – (2),       x + 8y = 16

                               x = 16 – 8y             (3)

       Substitute (3) in (2),             2(16 – 8y) – 3y    = 1

                                                                         19 y    = 31

                                                                               y      = 31/19          (4)

       Substitute (4) in (3),     x = 16 – 8(31/19) = 56/19

 

 

The difference of the coefficients of one variable in two given equations is the same (or opposite sign) as the difference of coefficients of the other variable

 

       Use subtraction. Then change the subject and substitute in one of the given equation.

 

 

Example

 

       Solve:             9x + 3y = 9            (1)

                               7x + 5y = -1           (2)

       Solution:      

               (1) – (2),        2x – 2y = 10

                                       x = 5 + y                         (3)

               Substitute (3) in (1),  9(5 + y) +3y   = 9

                                                       45 + 9y + 3y  = 9

                                                               12y         = - 36

                                                                       y     = -3                 (4)

               Substitute (4) in (3),                     x      = 2 

 

 

The sum of the coefficients of the two variables are the same

      

       Sum first, then subtract.

 

 

Example

 

       Solve:             x + 9y = 57                (1)

                                9x + y   = 33                (2)

       Solution:      

               (1) + (2),        10x + 10y     = 90

                                               x + y        = 9         (3)

               (2) – (3),                        8x = 24

                                                       x      = 3          (4)

               Substitute (4) in (3),    y      = 6        

 

The constant term of the equations are the same

 

       Equate the constant term, then eliminate variable or substitute.

 

 

Example

 

       Solve:             4x - y   = 110              (1)

                                9y - x   = 110              (2)

       Solution:

               From (1) and (2),       4x – y  = 9y – x

                                                               5x   = 10y

                                                                x   = 2y                (3)

               Substitute (3) in (1),    4(2y) – y = 110

                                                                       y = 110/7        (4)

               Substitute (4) in (3),                     x = 220/7

 

 

The coefficients of one variable in two given equations have a multiple relation in the two equations

 

 

Example

 

       Solve:                   3x – 4y   = 7                  (1)

                                9x – 10y + 23= 0                (2)

       Solution:

               From (1),                3x = 7 + 4y                    (3)

               Substitute (3) in (2),     3(7 + 4y) –10y + 23 = 0

                                                               2y + 44 = 0

                                                               y = -22            (4)

               Substitute (4) in (3),     3x = 7 + 4(-22) = -81

                                                               x = -27

 

 

One equation is a fractional equation

 

 

Example

       Solve:    

                      

       Solution:

               From (1),  Let:

                                      

               Then       x = 5k – 1,  y = 2k +3                 (3)

               Substitute (3) in (2),            3(5k – 1) + 4(2k + 3) = 32

               Solving,                                  k = 1               (4)

               Substitute (4) in (3),            x = 4,   y = 5

 

 

Change of variables

Some simultaneous equations seem NOT linear. By changing variables, you can make the equations linear.

 

 

Example

       Solve:     :

                              

Solution:

               Put

                              

               Then we get a pair of LINEAR equations with variables  u, v :

                              

               From (4),        u = 8 + 5v               (5)

               Substitute (5) in (3),     2(8 + 5v) – v = 10

                                                       9v = –6

                                                   

               Substitute (6) in (5),    

                                                      

               Since

                                      

               Therefore,

                                      

               Solve for x and y, we get