Triangular Number , Square Number , Pentagon Number …. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ![]() |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triangular Numbers |
Square Numbers |
Pentagon Numbers |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Polygon numbers The
above diagrams show the geometric construction of polygon numbers. The formation
of the first six terms of triangular numbers, square numbers, pentagon
numbers are shown. You can extend to other polygon numbers. For triangular
numbers, the first term is 1. The second triangular number is the number of
points contained by the next larger triangle, that is 3. The third triangular
number is 6, etc. It can be easily seen that the n-th triangular number,
denoted by Dn is given by How to find the value of
other polygon numbers? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table of Data The following table shows the
value of the first ten values of the polygon numbers:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Construction of the table (1) The entries of the first column of the table are 1. (2) Write
down the Triangle Numbers using Dn = 1 + 2 + … + n =
(1/2)n(n + 1) (3) For Square Numbers, each number is the sum of the two triangle numbers, just on the top and top left. e.g. 9 = 3 + 6. (see the table on the top) (4) For
Pentagon Numbers, each number is the sum of the Square number just on the top
and the Triangular number just on top left. e.g. 51 = 36 + 15. (5) For
Hexagon Numbers, each number is the sum of the Pentagon number just on the
top and the Triangular number just on top left. e.g. 153 = 117 + 36. (6) You
can continue in this way with Heptagon numbers. But the question is: Can
we find the general formula for all each numbers? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Calculation of Polygon Numbers Let P(m, n)
be the nth value of the m-sided polygon number. So, P(4, 3) is the third
square number, that is, 9. P(5,
6) is the sixth pentagon number, or 51. To begin with, the nth
square number is given by: P(4,
n) = 1 + 3 + … + (2n - 1) We can calculate this sum
simply by multiplying the number of terms by the average value of the
terms. Therefore, we get P(4, n) = n (2n – 1
+ 1)/2 = n2. Extending this method we can
get: P(m,
n ) = 1 + ( m – 1) + …. + [(m – 2)n – (m – 3)] The last term needs some
investigation and is left to the reader. Multiplying the number of
terms by the average value of the terms, we get: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Finite Difference Finite difference method is an
interesting way to evaluate sequence of numbers. It is rather mathematical.
Here are the simplified way procedures and more sophisticate calculations are
omitted. (1) First we
list the terms as a sequence of numbers, say, using the pentagon numbers: 1, 5, 12, 22, 35, 51, 70, 92, …. (2) Find the
differences between successive terms until a constant is reached for every
difference. (The
differences of the terms are written on a line below) 1 5 12 22 35 51 70 92 4 7 10 13 16 19 22 3 3 3 3 3 3 (3) Count the
number of times it was necessary to get a common difference. In
this case, it is 2, and the common difference is 3. (4) The number
of subtractions is the degree of the polynomial describing the sequence! (5) If you go
through the polygon numbers, the degree of the polynomial needed is always 2. Therefore, P(m,
n) = an2 + bn + c (2) (6) The point is
how to get a, b, c. The
trick is the 0th, 1st and 2nd term of the mth
polygonal number are: 0, 1, m (Hala!
we use the 0th term) From
(2) P(m,
0) = a02 + b0 + c = 0 Þ c = 0 (3) P(m,
1) = a12 + b(1) + 0 = 1 Þ a + b = 1 (4) P(m,
2) = a22 + b(2) + 0 = m Þ 4a + 2b = m (5) Solving
(3), (4), (5), we get: Putting
(6) in (2) we get: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Further investigations: (1) Check that
equations (1) and (7) are in fact the same formula for calculating polygon
numbers. (2) By using substitution,
check that the formula (1) or (7) can generate the table (or part of the
table) above in the data part. (3) You can also
find the polygon numbers by using the difference method in reverse.
The first slant numbers are 1, m
- 1, m – 2 for m-sided polygon
numbers. You then start by adding numbers. For example, for
octagon numbers, the first slant numbers are 1, 7, 6 and
the third row with constant values of 6: 1 8 21 40 65 96 133
… 7 13 19 25 31 37 …. 6 6 6 6 6 … |