Perfect square problems

 

Number pattern

 

              1 ´ 2 ´ 3 ´ 4 + 1                  = 25       = 52

              2 ´ 3 ´ 4 ´ 5 + 1          = 121      = 112

              3 ´ 4 ´ 5 ´ 6 + 1          = 361      = 192

              5 ´ 6 ´ 7 ´ 8 + 1          = 841        = 292

              :        :        :        :        :

 

 

Algebra

 

              The pattern seems to work onwards. Can we prove this?

              Simple! Use algebra!

 

              n(n + 1)(n + 2)(n + 3) + 1

              = [n(n + 3)] [(n + 1)(n + 2)] + 1

              = [n2 + 3n] [n2 + 3n + 2] + 1

              = [(n2 + 3n + 1) – 1] [(n2 + 3n + 1) + 1] + 1

              = (n2 + 3n + 1)2 – 12 + 1              [since  ( x – y )(x + y) = x2 – y2]

              = (n2 + 3n + 1)2,         which is a complete square.

 

              \ n(n + 1)(n + 2)(n + 3) + 1 = (n2 + 3n + 1)2

             

              If you put in n = 1, 2, 3, 4, ….  , you can get the number pattern on the top.

 

 

Number pattern

 

              49                     =      72

              4489                =      672

              444889           =      6672

              44448889      =      66672

              :        :        :        :

 

 

Algebra

 

              Let  m = 11….1 (n times)

 

              \ 10n  =  9 × 11….1   + 1 = 9m + 1

                                                 (n times)

 

              44….……..488……..…..89     =     44….…4 ×10n + 88…..…8 + 1

              (n times)         (n-1 times)                      (n times)                  (n times)

 

                                                                           =      4m (9m + 1) + 8m + 1

                                                                           =     36 m2 + 4m + 8 m + 1

                                                                           =     36 m2 + 12m + 1

                                                                           =     (6m + 1)2

                                                                           =      (66………6 + 1)2

                                                                                    (n times)

                                                                           =     (66…..…..67)2

                                                                                    (n-1 times)

 

 

Number pattern

                 

              11                    – 2                   =      9               =      32

              1111                – 22                =     1089               =     332

              111111           – 222              =      110889            =     3332

              11111111       – 2222           =      11108889       =      33332

              :        :        :        :        :

 

 

Algebra

 

     Let        m = 11….11 (n times)

     Then       22….22 (n times)        =     2m

             

     11….11  (2n times)      =      11….11 (n times) ´ 100….00 (n zeros) + 11….11 (n times)

                                                 =     100….00 (n zeros) ´ m + m

             

              \     11….11 (2n times) – 22….22 (n times)

                       =     [100….00 (n zeros) ´ m + m] – 2m

                       =      100….00 (n zeros) ´ m – m

                       =      99….99 (n times) ´ m

                       =      9m ´ m

                       =      (3m)2

                       =      (33….33)2  (n threes)