Factorization of x4 + x2y2 + y4

 

What you should know before…

 

        a2 – b2 = (a + b) (a – b)                     (1)

        a3 + b3 = (a + b) (a2 - ab + b2)           (2)

        a3 – b3 = (a – b) (a2 + ab + b2)          (3)

        a2 + 2ab + b2 = (a + b)2                    (4)

 

 

The Round-about Tour

 

      Let us begin with the factorization of x6 – y6 in two ways :

 

(a)        x6 – y6 = (x2)3 – (y2)3 = (x2 – y2)[(x2)2 + x2y2 +(y2)2], by (3)

                        = (x + y)(x – y)(x4 + x2y2 + y4),                    by (1)

 

(b)        x6 – y6 = (x3)2 – (y3)2 = (x3 + y3)(x3 – y3),                  by (1)

                         = (x + y)(x2 – xy + y2)(x - y)(x2 +xy +y2),      by (2) and (3)

 

Which of the above factorization is correct?

 

Of course, (b) is the complete factorization, (a) is not.

 

Comparing the results in (a) and (b), we can get:

 

            x4 + x2y2 + y4 = (x2 + xy + y2)(x2 –xy + y2)

 

 

Further investigation

 

      x4 + x2y2 + y4    = (x4 + 2x2y2 + y4) - x2y2               (note that one term is added and                                                                                                                   subtracted)

                               = (x2 + y2)2 – (xy)2,                      , by (4)

                              

                               = [(x2 + y2) + xy] [(x2 + y2) – xy]  , by (1)

                              

                               = (x2 + xy + y2)(x2 –xy + y2)

 

Similar way

 

      There are some factorization which use the same technique, here is one example:

 

            x4 + 4   = (x4 + 4x2 + 4) – 4x2

                        = (x2 + 2)2 – (2x)2

                        = (x2 + 2 + 2x)(x2 + 2 – 2x)

                        = (x2 + 2x + 2)(x2 – 2x + 2).