The centroid of a triangle divides each median in the ratio 2:1

 

 

 

The Theorem

 

D, E, F are mid-points of BC, CA, AB.

AD, BE and CF are medians.

The medians cut each others are centroid  G .

We need to show that:

 

AG : GD = BG : GE = CG : GF = 2 : 1

 

 

 

 

 

Simple Proof

 

Reflect the triangle along AC, you can get a diagram below:

 

 

ABCB1  is a parallelogram.

BEB1  is a straight line .

     Since  CD = AD1  and  CD // AD1, 

     DCD1A  is a parallelogram.  (opposite sides equal and parallel.)

\ DG // CG1
Since  BD = DC and DG // CG1 
\  BG = GG1   (intercept theorem)

BG : GG1 = 1 : 1

Since  GE = EG1 ,  BG : GE = 2 : 1.