Proofs of Sine Law

 

Height of triangle

 

  

 

In Diagram 1,

If C is acute, the altitude from point A to BC is given by  ha = AM = b sin C 

In Diagram 2,

If C is obtuse, we still get    ha = AM = b sin (180° - C) = b sin C  

 

Similarly, if you consider angle B, you get   ha = c sin B

 

Dropping altitudes from B to CA and C to AB, we get the following equalities:

 

                     ha = b sin C = c sin B

                     hb = c sin A = a sin C

                     hc = a sin B = b sin A

 

             We can get the Sine Law easily from these equalities:

                    

 

 

Area of the triangle

            

             Area of the triangle = D

                    

             Consider this formula cyclically, we have:

                    

             We can get the Sine Law rearrangement:

                    

 

 

 

Circle

 

             If you know some theorems involving circle, the proof of Sine Law is more interesting.

You can draw a circle passing through the vertices of the DABC.

This circle is called the circum-circle. Let O be the center of the circle.

Join CO and produce to meet the circle again at P. Join PB.

 

                     PC = 2R         (Diameter of the circle)

                     ÐPBC = 90° (Ð in semi-circle)

                     ÐP = ÐA               (Ð in same segment)

                    

                    

                    

             By considering other angles of the triangle, we get:

                    

 

 

Sine Law

                    

                     In conclusion we have the Sine Law, written as:

 

                            

             where D is the area of the triangle ABC

             and R is the radius of circumcircle passing through A, B, C.

 

                     Also, note that Sine Law can be written in ratio form:

 

                             sin A : sin B : sin C = a : b : c