Remainder when a polynomial is divided by a quadratic

 

Divided by (x – a)(x – b)

 

         Let f(x)  be a polynomial with real coefficients.  If f(x) is divided by a quadratic   (x – a)(x - b),  the remainder must be a linear function and should be of the form Ax + B.

We would like to find the values of A and B and hence the remainder.  Let q(x) be the quotient of division.

         We write,

                                 f(x) = (x – a)(x – b) q(x) + (Ax + B)   ….. (1)

         Now,                   f(a) = (a – a)(a – b) q(a) + Aa + B

                                                 = Aa + B                               ……..(2)

         Similarly,                f(b)  = Ab + B                                       ……..(3)

         (2) – (3),        f(a) – f(b) = A(a – b)

         If  a ¹ b, 

                                

         Substitute (4) in (2) and simplify we get:

                                

The remainder is:

                                

 

 

An example

 

                Find the remainder if  f(x) = (x – 1)100 + 2(x – 2)99 + 6  is divided by (x – 1)(x – 2).

Solution

                f(2) = (2 – 1)100 + 2(2 – 2)99 + 6 = 7

                f(1) = (1 – 1)100 + 2(1 – 2)99 + 6 = 4

        By (6),           Remainder

                               

 

 

Divided by (x – a)2

 

         If a = b , the previous calculations seem not work well. The reason is that the denominators of the formula in (6) is equal to zero.

 

         We therefore begin with:

                  

         Now,

                

         Differentiate (7),

                

         Hence                    f ’(a) = A   ………(9)

         Substitute (9) in (8) and simplify,

                                 B = f(a) – a f ’(a) ……..(10)

         The remainder is:

                 R = f ’(a) x + f(a) – af ’(a) ………(11)

 

 

Further note:

 

         If we take:

                                

         we can get (11) from (6). You may have a try.