A formula for quadratic equation

 

Problem

 

       If a, b are roots of a quadratic equation and the values of a + b, ab are given,

find a, b.

 

 

Example

 

       Given a + b = 3, ab = –5, find a, b.

 

Solution

       The quadratic equation with a + b = 3, ab = – 5 is

                       x2 – 3x – 5 = 0                                                                                               (1)

 

       Solve (1) using quadratic equation formula, we get:

                      

 

 

General formula

 

       Can we find a general formula (without finding the quadratic equation and solve the quadratic equation as in the above example) ?

 

 

Solution

 

(1)          First we note:

                                               (ab)2 = (a + b)2 - 4ab

                                              

               Therefore we have:

                                                      

               or

                                                      

               Although we have a “±” sign in (3) and another “±” in (4), we need only one “±” in (5).

               We also understand that even if a + b, ab are real numbers, a and b can be complex number.

 

(2)          We can also get (5) by Vieta’s Theorem:

                      

                       \   b = –a(a + b),    c = aab

               Substitute these equations in the quadratic equation formula, we have:

                      

               Simplify and cancel “a” in both numerator and denominator, we get:

                                                      

 

 

The problem again

 

               Given a + b = 3, ab = –5, find a, b.

 

               From (5), we get: