Find a partner |
Sometimes
it is interesting to find a “partner” in proving trigonometric identities or
evaluating trigonometric functions. The calculations are then easier. |
Example 1
Find
the value of sin2 10° + cos2 40° + sin 10° cos 40°. Solution
Let x
= sin2 10° + cos2
40° + sin 10° cos 40° y
= cos2 10° + sin2
40° + cos 10° sin 40° then x
+ y = 2 +
sin 50° x
– y = cos
80° - cos 20° - sin 30° = -2sin 50°sin 30° - 1/2 =
- sin 50° - 1/2 Adding
and divide by 2, we get x
= 3/4 |
Example 2
Find
the value of sin 10° sin 30° sin 50° sin 70°. Solution
Let x
= sin 10° sin 30° sin 50° sin 70° y = cos 10°cos 30°cos 50°cos 70° then
xy = (sin 20° sin 60° sin 100° sin 140°)/16, using sin 2q = 2 sin q cos q =
(sin 20° sin 60° sin 80° sin 40°)/16 =
(cos 70° cos 30° cos 10° cos 50°)/16 = y/16 Since y ¹ 0, cancel y on both sides, we therefore have x = 1 / 16 Point to
study : How do you evaluate y? (see bottom
of this page for solution) |
Example 3
Solution
Let
x
= cos q cos 2q cos 4q … cos 2nq y
= sin q sin 2q sin 4q …. sin 2nq (in
the above, the power for 2 is (n+1) because the index of n “runs through” 0
to n) Since
y ¹ 0, canceling
the y on both sides, we get: |
Example 4
Find
the value of: (1
+ tan 1°)(1 + tan 2°)…. (1 + tan 44°) Solution
Let x
= (1 + tan 1°)(1 + tan 2°)…. (1 + tan 44°) then x
= (1 + tan 44°)(1 + tan 43°)…. (1 + tan 1°) Multiply,
we get: x2 = [(1 + tan 1°)(1 + tan 44°)][(1 + tan 2°)(1 + tan 43°)]…[(1 + tan 44°)(1 + tan 1°)] Since (1
+ tan k°)[1 + tan (45°-k°)] \ x2
= 244 \ x
= 222. |
Challenge Show
that: tan q + 2 tan2q + 4 tan 4q + …. + 2n tan(2nq) = cot q - 2n+1cot(2n+1q). Solution for
point to study: cos 10°cos 30°cos 50°cos 70° = (cos 10° cos 70°) cos 30°cos 50° |