Find a partner

 

               Sometimes it is interesting to find a “partner” in proving trigonometric identities or evaluating trigonometric functions. The calculations are then easier.

 

 

Example 1

                       Find the value of  sin2 10° + cos2 40° + sin 10° cos 40°.

 

Solution

               Let        x = sin2 10° + cos2 40° + sin 10° cos 40°

                               y = cos2 10° + sin2 40° + cos 10° sin 40°

               then         x + y       = 2 + sin 50°

                               x – y       = cos 80° - cos 20° - sin 30° = -2sin 50°sin 30° - 1/2

                                               = - sin 50° - 1/2

               Adding and divide by 2, we get           x = 3/4

 

 

Example 2

                       Find the value of sin 10° sin 30° sin 50° sin 70°.

 

Solution

               Let        x     = sin 10° sin 30° sin 50° sin 70°

                               y      = cos 10°cos 30°cos 50°cos 70°

               then        xy   = (sin 20° sin 60° sin 100° sin 140°)/16,  using sin 2q = 2 sin q cos q

                                       = (sin 20° sin 60° sin 80° sin 40°)/16

                                       = (cos 70° cos 30° cos 10° cos 50°)/16

                                       =  y/16

               Since  y ¹ 0,  cancel  y  on both sides,  we therefore have    x = 1 / 16

 

Point to study : How do you evaluate y? (see bottom of this page for solution)

 

 

Example 3

                      

 

Solution

 

               Let         x = cos q cos 2q cos 4q … cos 2nq

                               y = sin q sin 2q  sin 4q …. sin 2nq

              

                       (in the above, the power for 2 is (n+1) because the index of n “runs through” 0 to n)

               Since y ¹ 0, canceling the y on both sides, we get:

                      

 

 

Example 4

                       Find the value of:

               (1 + tan 1°)(1 + tan 2°)…. (1 + tan 44°)

 

Solution

               Let        x = (1 + tan 1°)(1 + tan 2°)…. (1 + tan 44°)

               then         x = (1 + tan 44°)(1 + tan 43°)…. (1 + tan 1°)

               Multiply, we get:

                 x2 = [(1 + tan 1°)(1 + tan 44°)][(1 + tan 2°)(1 + tan 43°)]…[(1 + tan 44°)(1 + tan 1°)]

               Since               (1 + tan k°)[1 + tan (45°-k°)]

                              

               \            x2 = 244

               \            x = 222.

 

 

Challenge

 

               Show that:     

       tan q + 2 tan2q + 4 tan 4q + …. + 2n tan(2nq) = cot q - 2n+1cot(2n+1q).

 

 

Solution for point to study:

       cos 10°cos 30°cos 50°cos 70° = (cos 10° cos 70°) cos 30°cos 50°