An example of Mathematical Induction

 

Let P(n)  be the proposition :

    1´2 + 2´3 + 22´4 + ¼ + 2n-1 (n + 1) = 2n (n) ,

where  n  is a positive integer.

 

We would like to use Mathematical Induction to prove that P(n) is true for all positive integers n.

 

(1)  For P(1),  

      L.H.S. = 1´2 = 2

      R.H.S. = 21´1 = 2

     \ L.H.S = R.H.S..

    \ P(1) is true.

 

(2)  Assume  P(k)  is true for some positive integer  k ,

      i.e.  1´2 + 2´3 + 22´4 + ¼ + 2k-1 (k + 1) = 2k (k)   ……. (1)

 

(3)  For P(k+1),

     1´2 + 2´3 + 22´4 + ¼ + 2k-1 (k + 1) + 2k (k + 2)

           = 2k (k) + 2k (k + 2) ,  by (1)

           = 2k (k + k + 2)

           = 2k+1 (k + 1)

    \ If  P(k)  is true, then  P(k + 1)  is true.

 

\Using (1), (2) and (3), By the Principle of Mathematical Induction,

  P(n) is true for all positive integers n .

  i.e.  1´2 + 2´3 + 22´4 + ¼ + 2n-1 (n + 1) = 2n (n)  for all positive integers n .

 

See note 1 & 2

 

 

 

 

 

 

See note 3

 

 

 

See note 4

 

 

See notes 5 & 6

See note 7

 

 

 

See note 8

 

 

 

 

See note 9

 

See note 9

 

 

Note 1:     The parts written in blue colour can be omitted.

                  The parts written in red colour are important and should be written in most cases.

Note 2:     P(n) is a proposition (or statement) and can only be true or false (but not both).

                  Do not mix up with the concept of "function".

Note 3:     You must NOT write "P(1) = 1´2 = 2".

Note 4:     You must NOT write "n = 1 is true."

Note 5:     You must NOT write "Assume n = k is true.", "Let n = k"

                  You must NOT write "P(k) = 1´2 + 2´3 + 22´4 + ¼ + 2k-1 (k + 1) = 2k (k)"

Note 6: 

  (a)   Here you must use "some". You must NOT use "all" or "any".

  (b)   Here you must use "positive integer" or "natural number"

       You must NOT use "positive number" , "real number" ,"integer" or "constant".

Note 7:       Give a number to identify your inductive hypothesis so that you can refer to later on.

Note 8:       Show that you have used the inductive hypothesis.

Note 9:     You must NOT use "all integers" or "all real numbers".

                  You may use "all positive integers" or "all natural numbers".