On Arithmetic Series and Geometric Series

 

      In proving the formulas of the sums of an arithmetic or geometric sequences,

the following non-conventional methods worth studying :

 

 

Arithmetic series

 

Let the arithmetic series be  a1, a2, …., an  with a common difference, d.

The arithmetic mean of the first n terms is equal to the arithmetic mean of the first and last terms.

That is:

     

            

            

 

 

 

Arithmetic series

 

Let the arithmetic series be  a1, a2, …., an  with a common difference, d.

(Please investigate the reasoning for equation (2) below)

 

S(n) =    a1 +   (a1 + d) +    (a1 + 2d)       + …….        +    [a1 + (n-1)d]                  (1)

S(n) =    an +    (an - d)  +   (an - 2d)       + …….  +    [an - (n-1)d]                       (2)

 

 

 

Geometric series

 

Let the geometric series be  a1, a2, …., an  with a common ratio,  r.  (r ¹ 1)

 

      S(n)       = a1 + a1r + a1r2 + …. + a1rn-1          

      S(n-1)    = a1 + a1r + a1r2 + …. + a1rn-2

 

We can see that :

 

      S(n) -  S(n-1)     =    a1rn-1                    (1)

      S(n) – r S(n-1)     =    a1                        (2)

 

The above is a simultaneous system of equations with 2 unknowns  S(n) and S(n-1).

     

We can then solve for  S(n).

Consider   (2) – r(1),             we get for r ¹ 1,   

                  

 

 

Geometric series

 

      Let the geometric series be  a1, a2, …., an  with a common ratio,  r.  (r ¹ 1)

Then,

                  

By the Equal Ratio Theorem,

                  

            

                   rS(n) – a1rn =    S(n) – a1

                   S(n) [1 – r] =     a1 [1 – rn]

            

            

 

Difference Method

 

For more mathematical mature readers, the employment of  first order difference method
in getting the formula for geometric series is interesting.

 

We define the difference operator:        Df(x) = f(x + 1) – f(x)

 

Then we have the following elementary properties:

1.          For any constant  k  ,  D k f(x) = k f(x + 1) – k f(x) = k [f(x + 1) – f(x)]

2.         

            

              

 

Now,     Darx-1  = arx – arx-1  = arx-1 (r – 1)

If  r ¹ 1,      then we get 

                                               

                                                                                      , by property (1) above.

Using property (2), we have:

Writing the summation in full, we finally get:

                    

Readers interested in learning more on difference method may consult some advanced algebra books.