Solve two variables order two simultaneous equations

 

Question

 

        Find the intersection points of :

 

               5x2 – 8xy + 5y2 + 26x – 28y + 32 = 0

               2x2 – 5xy + 2y2 + 14x – 13y + 20 = 0

 

Solution

 

Let (a, b) be the intersection point(s), after substitution, rearrange, we get:

 

        5a2 + (26 - 8b)a =    -5b2 + 28b - 32

        2a2 + (14 - 5b)a  =     -2b2 + 13b - 20

 

Put  x1 = a2 , x2 = a, we get a set of simultaneous equations in x1 and x2 :

 

        5x1 + (26 - 8b) x2       =    -5b2 + 28b - 32

        2 x1+ (14 - 5b) x2        =     -2b2 + 13b -20                                 (1)

 

The coefficient determinant of this set of simultaneous equations is:

              

 

If  b = 2, this coefficient determinant is equal to zero, at this time a satisfies both equations:

 

               5a2 + 10a    =    4

               2a2 + 4a      =     -2

 

However, there is no real a satisfying the both quadratic equations above.

 

Therefore     b is not equal to 2.

 

Using Crammer’s rule for (1), we get:

 

       

 

       

 

 

Since              x1 = a2 , x2 = a

               Therefore,     x22 = x1.

 

        Therefore      b satisfies the equation :

                      (2 - b)(b3 - 6b2 + 6b + 8) = (b - 4)2.

 

        Therefore  b is the root of the equation:

                      b4 – 8b3 + 19b2 –12z = 0

                      b (b – 1)( b – 3)( b – 4) = 0

 

The roots for b are 0, 1, 3, 4 and after finding the corresponding a:

The points are  (-2, 0); (-3, 1), (1, 3), (0, 4)

 

 

Exercise

 

Solve the simultaneous equations:

 

        x2 – 3xy + 2y2 – 16x – 28y = 0

        x2 – xy – 2y2 – 5x – 5y = 0

 

 

Answer :  (0, 0); (3, -1); (-2, 2)