Introduction:

     Two points define a straight line.

     Three points define a circle.

     How many points should be needed to define a conic?

     Five!

     Why?

 

     The general equation has 6 coefficients :

      Divide the equation through-out by the constant A. We get:

         

     So we need five points to find all five coefficients: p, q, r, s, t.

     Solving 5 equations with 5 unknowns is not an easy task…….

 

Find the equation of the conic passes through the points  :

P(0, -4), Q(1, -6), R(3, 2), S(4, 1), T(2, -1)

 PQ :  2x +y + 4 = 0

 RS :  x + y – 5 = 0

 PS :  5x – 4y – 16 = 0

 QR :  4x – y – 10 = 0

 Use Two points form

 to find the straight lines.

 

PQ´RS : (2x + y + 4)(x + y – 5) = 0

PS´QR : (5x – 4y – 16)(4x – y – 10) = 0

Two pairs of straight lines, each passing through P, Q, R, S.

System of conics passing through P, Q, R, S:

PQ´RS+ k PS´QR :

(2x + y + 4)(x + y – 5) + k(5x – 4y – 16)(4x – y – 10)= 0  (1)

Forming family of conics through 4 points.

Since T(2, -1) is on (1), substitution will get:

 -28 + 2k = 0

 \ k = 14 ….. (2)

Subst. (2) in (1), we get:

 (2x + y + 4)(x + y – 5) + 14(5x – 4y – 16)(4x – y – 10)= 0

 

 

Use the last point to find k.

The required conic :

    

 

Simplify