Method of Undetermined Coefficients |
What? The
method of undetermined coefficients is an old method for finding the sum of a
finite series. |
How? The
best way to show how this method works is to use an example. Suppose we like
to find the finite sum of the series: 1×2 + 2×3 + 3×4 + …. + n(n+1). Let f(n) = 1×2 + 2×3 + 3×4 + …. + n(n+1) º A0 + A1n
+ A2n2 + A3n3 + …. (1) Then f(n+1)
= 1×2 + 2×3 + 3×4 + …. + n(n+1) +
(n+1)(n+2) º A0 + A1(n
+ 1) + A2(n + 1)2 + A3(n + 1)3 +
…. (2) (2) – (1), (n
+ 1)(n + 2) º A1
+ A2 (2n + 1) + A3(3n2 + 3n + 1) + …. (3) Equation
(3) is an identity and the highest power of n on the L.H.S. is 2, it follows
that A4, A5,
…. are all equal to zero. Equating coefficients on the
two sides of the identity of (3): n2
: 1
= 3A3, \ A3 = 1/3 n1
: 3
= 2A2 + 3A3 = 2A2 + 1 \ A2 = 1 n0
: 2
= A1 + A2 + A3 = A1 + 1 + (1/3) \ A1 = 2/3 \ 1×2 + 2×3 + 3×4 + …. + n(n+1) º A0 + (2/3)n +
n2 + (1/3)n3 …. (4) Put n = 1 in (4), 1×2 = A0 + (2/3)
+ 1 + (1/3) \ A0 = 0 \ 1×2 + 2×3 + 3×4 + …. + n(n+1) º (2/3)n + n2 + (1/3)n3 º n(n+1)(n+2)/3 |
More… Can you use the Method of
Undetermined Coefficients to check: (1) 12 + 22 + 32
+ …. + n2 º n(n+1)(2n+1)/6 (2) 13 + 33 + 53
+ …. + (2n-1)3 º n2(2n2
– 1) (Hint: should
work out A4) |