Sketch a graph with implicit equation |
||||||||||||||||||||||||||||||||||||||||||||
Problem Sketch
the graph : x3
– 3axy + y3 = 0 (*) |
||||||||||||||||||||||||||||||||||||||||||||
Click here to open a window to show the final sketch of the graph.
Minimize, open, or resize the window so that you can check at various
discussions below. |
||||||||||||||||||||||||||||||||||||||||||||
Intercept, domain, range, periodicity The
curve cuts at the point (0, 0). Domain
(-¥, +¥) Range
(-¥, +¥) The
function is not periodic. |
||||||||||||||||||||||||||||||||||||||||||||
Symmetry (1) Replace x by (– x) in (*), (*) is not
unchanged. Therefore (*) is not symmetric about y-axis. (2) Replace y by (– y) in (*), (*) is not
unchanged. Therefore (*) is not symmetric about x-axis. (3) Replace x by (– x) and in (*), y by (– y)
in (*). The equation is unchanged. Therefore
the equation is symmetric about the line |
||||||||||||||||||||||||||||||||||||||||||||
Derivatives x3 – 3axy + y3 = 0 (*) Differentiate (*), we get: 3x2 –3axy’ – 3ay
+ 3y2y’ = 0 The second derivative is
difficult to find. Differentiate (1), we get: Substitute (1) in and
simplify, Getting the second derivative
seems not very helpful in sketching this graph. |
||||||||||||||||||||||||||||||||||||||||||||
Turning points For
turning points, put the first derivative to zero. From (1), we get ay – x2
= 0 y
= x2/a (3) It seems to get into
trouble since we want the value(s) of x. Luckily we have the
original equation! Substitute (3) in (*), we
have: x6
– 2a3x3 = 0 x3(x3
– 2a3) = 0 Testing
for local maximum or minimum for (4) is not easy. It
is also not easy to find the corresponding value of y for Later, we know
that y is a local maximum when |
||||||||||||||||||||||||||||||||||||||||||||
Asymptotes There are no horizontal or
vertical asymptotes. For oblique asymptote, y = mx + c x3 – 3axy + y3
= 0 (*) Take x®¥, 1 – 3a(0)m + m3
= 0 m3
+ 1 = 0 \ m = -1. \ The oblique asymptote
is y = -x – a. |
||||||||||||||||||||||||||||||||||||||||||||
Parametric equation Let y = xt (5) Substitute in x3 – 3axy + y3
= 0 (*) We get, x3
– 3ax(xt) + (xt)3 = 0 x3
– 3ax2t + x3t3 = 0 x(1
+ t3) = 3at Subst. (6) in (5), Please note: (1) Parametric form can give you more
insight in sketching the curve, which is discussed later. (2) Equation (5) is only a good try to
change an implicit equation to parametric form. The method (3) It is very interesting to see where the
point (x, y) lies for different values of t:
|
||||||||||||||||||||||||||||||||||||||||||||
Derivatives You may check the following: and from this you can get: |
||||||||||||||||||||||||||||||||||||||||||||
Tables The table of first derivatives
can give you a lot of hints in sketching the curve. The second derivatives
give you even more information. (The second derivative is not discussed
here.)
|
||||||||||||||||||||||||||||||||||||||||||||
Asymptote re-visited From the parametric form: \ The oblique asymptote
is y = -x – a, the same as
before. |