| Sketch a graph with implicit equation | ||||||||||||||||||||||||||||||||||||||||||||
|   Problem                           Sketch
  the graph :          x3
  – 3axy + y3 = 0                          (*)   | ||||||||||||||||||||||||||||||||||||||||||||
|   Click here  to open a window to show the final sketch of the graph.
  Minimize, open, or resize the window so that you can check at various
  discussions below.   | ||||||||||||||||||||||||||||||||||||||||||||
|   Intercept, domain, range, periodicity                           The
  curve cuts at the point (0, 0).                           Domain
           (-¥, +¥)                           Range
              (-¥, +¥)                           The
  function is not periodic.   | ||||||||||||||||||||||||||||||||||||||||||||
|   Symmetry    (1)     Replace x by (– x) in (*), (*) is not
  unchanged. Therefore (*) is not symmetric about y-axis. (2)     Replace y by (– y) in (*), (*) is not
  unchanged. Therefore (*) is not symmetric about x-axis. (3)     Replace x by (– x) and in (*), y by (– y)
  in (*). The equation is unchanged.           Therefore
  the equation is symmetric about the line     | ||||||||||||||||||||||||||||||||||||||||||||
|   Derivatives     x3 – 3axy + y3 = 0                          (*) Differentiate (*), we get:    3x2 –3axy’ – 3ay
  + 3y2y’ = 0                                                 The second derivative is
  difficult to find. Differentiate (1), we get:                         Substitute (1) in and
  simplify,                 Getting the second derivative
  seems not very helpful in sketching this graph.   | ||||||||||||||||||||||||||||||||||||||||||||
|   Turning points                  For
  turning points, put the first derivative to zero. From (1), we get               ay – x2
  = 0                                                y
  = x2/a                                           (3) It seems to get into
  trouble since we want the value(s) of x. Luckily we have the
  original equation! Substitute (3) in (*), we
  have:                                                x6
  – 2a3x3 = 0                        x3(x3
  – 2a3) = 0                             Testing
  for local maximum or minimum for (4) is not easy.             It
  is also not easy to find the corresponding value of y for Later, we know
  that  y is a local maximum when    | ||||||||||||||||||||||||||||||||||||||||||||
|   Asymptotes          There are no horizontal or
  vertical asymptotes. For oblique asymptote, y = mx + c                        x3 – 3axy + y3
  = 0                          (*)         Take  x®¥,    1 – 3a(0)m + m3
  = 0                                        m3
  + 1 = 0                                        \ m = -1. 
         \ The oblique asymptote
  is  y = -x – a.   | ||||||||||||||||||||||||||||||||||||||||||||
|   Parametric equation   Let  y = xt                                                                    (5) Substitute in  x3 – 3axy + y3
  = 0                               (*) We get,                x3
  – 3ax(xt) + (xt)3 = 0                                x3
  – 3ax2t + x3t3 = 0                                x(1
  + t3) = 3at                                                                 Subst. (6) in (5),                                  Please note: (1)  Parametric form can give you more
  insight in sketching the curve, which is discussed later. (2)  Equation (5) is only a good try to
  change an implicit equation to parametric form. The method  (3)  It is very interesting to see where the
  point (x, y) lies for different values of t:   
 
 | ||||||||||||||||||||||||||||||||||||||||||||
|   Derivatives          You may check the following:                 and from this you can get:                 | ||||||||||||||||||||||||||||||||||||||||||||
|   Tables          The table of first derivatives
  can give you a lot of hints in sketching the curve. The second derivatives
  give you even more information. (The second derivative is not discussed
  here.)   
   
   
 
   | ||||||||||||||||||||||||||||||||||||||||||||
|   Asymptote re-visited          From the parametric form:                 
 
 \ The oblique asymptote
  is  y = -x – a, the same as
  before.   |