An application of Mathematical Induction to Inequality

 

Problem

 

          Prove that :

         

 

 

Mathematical Induction

 

       The use of Mathematical Induction to prove

                                    (1)

is difficult. So we would like to change the proposition to:

 

               nn+1 > (n + 1)n  , " n ³ 3                 (2)

 

       However, the change does not improve much! You may try before you carry on.

 

 

Change of Proposition

 

       It is interesting that you can change the proposition to :

 

P(n) :  v ³ n ³ 3,  nvn > (v + 1)n.

 

Induction on n.

Proof:

For P(3),   3v3   = v3 +v3 + v3 ³ v3 + 3v2 + 9v   (since v ³ 3)

                               = v3 + 3v2 + 3v + 6v

                               > v3 + 3v2 + 3v + 1

                               = (v + 1)3.

\           P(3) is true.

 

Assume P(k) is true for some k, where  v ³ k ³ 3,

that is,     kvk > (v + 1)k…… (*)

 

For P(k + 1),        (k + 1)vk+1      = (k + 1) v vk  = (kv + v) vk

                                                               ³ (kv + k) vk

                                                               = (v + 1) kvk

                                                               > ( v + 1)(v + 1)k,   by (*)

                                                               = (v + 1)k+1.

\ P(k + 1) is also true.

By the Principle of Mathematical Induction, P(n) is true "nÎN, where v ³ n ³ 3.

 

Hey, my friend.  The proof is complete by putting  v = n.  Check this!

 

                              

 

Another viewpoint

 

       In the discussion of the constant e in most textbook, the sequence

                      

is shown to be bounded and monotonic increasing.

 

       If we assume that

              

is proved, then this problem can be solved easily.

 

       Applying this,

              

Hence (2) is proved. Result follows!