An example in using L’hospital Rule

 

The Problem

     Use L’hospital Rule to show that:

                            

 

 

Go L’hospital

            

                                             ,    applying L’ hospital rule

                                            

 

 

Fun with rationalization

 

     Algebra method is even better for this problem.

 

                 , rationalization of numerator!

                                    

                                    

 

Differentiation is an unexpected way

 

     Put  ,

     As n ® ¥, h ® 0.

    

                                                      

                                                                                                                                     (Wow! Fun!)

 

 

More involved calculations using “Bounded monotone theorem”

 

  ………. (1)

 

(Boundedness)

 

(Monotonic increasing)

 

     4n2+4n+1 > 4n2+4n

    

    

    

    

    

                            

             (It is important to note that the “thinking steps” and the “working steps” in the above are in reverse order!)

 

(The limit)

 

     From the above, by the Bounded monotone theorem, the limit exists.

Let
    

From (1),        

                             an2 + 2nan + n2  = n2 + n

                            

Taking limit  n ® +¥ , we can get:          

                                                    

Haha! Calculations are long, not for the chicken heart!