Harmonic series

 

The harmonic series

                

is divergent.

 

 

Proof 1

 

If not, it converges to a finite sum  S , then

                

                

          \ S > S

 

Contradiction!

 

 

Proof 2

                           

                           

                           

                           

                           

                            = ¥

 

 

Proof 3

 

          First consider:

         

 

          Then,  if  S  is finite, we have

                

                           

                    

                           

                            = 1 + S

 

          Contradiction !

 

 

Proof 4

 

    A short calculus proof using definite integral,

         

 

\ S is divergent.

 

 

Proof 5

 

Another proof using differentiation .

First we like to prove that  :  x ³ ln (x + 1)  for all  x > –1 .

    Let  f(x) = x – ln (x + 1)

  

   

 

   \  f(x)  is a minimum at  x = 0

    \  f(x) ³ f(0) = 0 Þ  x ³ ln (x + 1)

 

Next,  we put  x = 1/r

   

   

 

    \          S is divergent.

 

 

Proof 6

 

First consider : 

            

            

    

            

                

                

 

\       S is divergent.

 

 

 

Proof 7

 

If  

            

 

where  S  is finite.

 

then

            

 

The sum of the odd terms must be the other half:

            

 

However this is impossible since for all positive integer, we have :

            

The contradiction concludes the proof.