Spot the mistake in Differentiation

Question

                Let 

                               

                find f’(0), if exists.

 

        “Supposed solution”

 

        For x ¹ 0,

               

        Since    does not exist, (see note below)

        \  does not exist.

    \ f ’ (0) does not exist.

        Anything wrong?

 

        Note

        L =  does not exist:

                Choose   , then

                Choose    , then

        \ L does not exist since  “limit, if exists, must be unique.”

 

        Solution

 

        ,

                        = 0      as  

 

        For smart mathematician like you

 

        For this function f(x) in this question:

        (1) Is f(x) continuous at x = 0?

        (2) Is f ’(x) continuous at x = 0?

        (3)   Does f ”(x) exist?

                                                                        Enjoy your investigation!