Kill two birds with a stone

 

Integration using complex variable

         

          Surprisingly, the use of complex variables can help to solve integration, in a neat and compact way. We like to illustrate this in the following example. Two integrals can be evaluated at the same time. To begin, I suppose you know the Euler formula:

                 

                          eix = cos x + i sin x

 

 

Example

 

          Evaluate

                          C = ò e2x cos 4x dx,        S = ò e2x sin 4x dx.

Solution

          C + iS    =     ò e2x (cos 4x + i sin 4x) dx

                          =      ò e2x e4ix dx

                          =      ò e(2+4i)x dx

                                            (for simplicity we don’t write the integrating constant)

                         

                         

                         

                         

 

Comparing the real and imaginary parts, we get:

 

         

 

You’ve got two birds with a stone!

                         

 

Note

 

       This method can be used to find the integrals of the form:

              

                  C = ò eax cos bx dx,        S = ò eax sin bx dx.