Proof of A.M. ³ G.M. by differentiation

 

Finding Minimum by calculus first

 

                Given a1 > 0, a2 > 0, …, an > 0, determine the minimum of

                  for x > 0.

 

 

Solution

 

         

 

        Taking logarithm and finding derivative

       

 

        Differentiate, we get:

                 

                              …..(1)

 

 

        Test for minumum

        For critical value , f’(x) = 0                   

                              

               \

(i)            When

 

               From (1) and since f(x) > 0,  f’(x) < 0

 

(ii)          When

 

               From (1) and since f(x) > 0,  f’(x) > 0.

 

        The minimum

        \ f(x) attains its minimum  when

              

 

 

 

Prove by mathematical induction

 

                  We then use the previous result to show that:

                         

 

 

Solution

 

From previous result, for all x, we have

              

 

  Let P(n) be the proposition : “A n ³ G n.”

 

        For P(1), A1 = a1 = G1.   \ P(1) is true.

 

        Assume P(n-1) is true for some integer n.

                      that is,    A n-1³ G n-1.  

                            

 

       

        For P(n), By (3), putting x = an.

              

 

        \ P(n) is true.

 

\ By the Principle of Mathematical Induction, A n ³ G n is true " nÎN.

 

 

Final note

 

        You can start by showing that the function:

              

 

attains its minimum at