Componendo et Dividendo

 

     The following theorems on proportion are very useful. The names of the theorems in Latin are included for interest only.

 

Name in Latin

Theorem

Alterando

Invertendo

Componendo

Dividendo

Componendo et Dividendo

 

 

 

Proofs of Componendo et Dividendo

 

(1)        k-method

                     Let

                                    

                     Then   a = bk,  c = dk

                            

                            

                    

 

(2)        Combine the proofs of Componendo and Dividendo theorems

                    

                    

             Divide (1) by (2) and cancel the “b” and “d” in the denominators of (1) and (2),

                    

 

(3)        Divide and multiply

                     Given:

                                    

            

 

 

Converse of Componendo et Dividendo

 

The point is : Can we go backward?

Can we prove:

                            

 

 

Proofs of the converse

 

(1)        Direct expansion

                                            

                             (a + b)(c – d)  = (a – b)(c + d)

                     ac – ad + bc – bd = ac + ad – bc – bd

                                     \ 2bc    = 2ad

                                             ad    = bc

                                            

 

(2)        Apply Componendo et Dividendo itself

 

             This is quite interesting. You use the theorem to prove the converse of the theorem!

                                    

                    

                                    

                                    

 

 

Exercise

             Apply Componendo et Dividendo to the following proportional and solve the equation:

                            

 

Highlight the box below for answer:

(Ans)  x = -2               (Note:  x = 2  is not an answer!)